Personalized Prognostic Models for Oncology: A Machine Learning Approach
نویسندگان
چکیده
We have applied a little-known data transformation to subsets of the Surveillance, Epidemiology, and End Results (SEER) publically available data of the National Cancer Institute (NCI) to make it suitable input to standard machine learning classifiers. This transformation properly treats the right-censored data in the SEER data and the resulting Random Forest and Multi-Layer Perceptron models predict full survival curves. Treating the 6, 12, and 60 months points of the resulting survival curves as 3 binary classifiers, the 18 resulting classifiers have AUC values ranging from .765 to .885. Further evidence that the models have generalized well from the training data is provided by the extremely high levels of agreement between the random forest and neural network models predictions on the 6, 12, and 60 month binary classifiers.
منابع مشابه
Prostate cancer radiomics: A study on IMRT response prediction based on MR image features and machine learning approaches
Introduction: To develop different radiomic models based on radiomic features and machine learning methods to predict early intensity modulated radiation therapy (IMRT) response. Materials and Methods: Thirty prostate patients were included. All patients underwent pre ad post-IMRT T2 weighted and apparent diffusing coefficient (ADC) magnetic resonance imagi...
متن کاملInfrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT
Machine learning applications for personalized medicine are highly dependent on access to sufficient data. For personalized radiation oncology, datasets representing the variation in the entire cancer patient population need to be acquired and used to learn prediction models. Ethical and legal boundaries to ensure data privacy hamper collaboration between research institutes. We hypothesize tha...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1606.07369 شماره
صفحات -
تاریخ انتشار 2016